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Initial ideas are presented and the characteristic features of the implementation of the “POD- 

MODELI” (“submodels”) program, which has been written during recent years [l], are described. At 

the foundation of this program lies a deliberation concerning the exhaustion of all the possibilities of 

an exact simplification of “large” mathematical models by means of the full use of the symmetry 

properties built into them. Such a simplification is achieved by changing to submodels which describe 

classes of exact particular solutions and lead to a reduction in the dimensions of the problems making 

them easier to analyse. Although, in its full scope, this program is obviously not exhaustible, 

nevertheless, as regards each fixed “large model” which arises in the mechanics of a continuous 

medium and, in general, in mathematical physics, it is specific and fully realizable in practice and serves 

for the organization and supplementation of a databank on mathematical models of natural processes. 

In Section 1 we describe the conceptual basis of the “PODMODELI” program, the principal 
idea, aim, content, theoretical foundations and overall scientific significance. The most 
important operational algorithms which are used in its execution are pointed out. Section 2 
contains initial information concerning “large models” of gas dynamics and their overall 
symmetry. In Section 3, we present a general description of the algorithm for group classi- 
fication and the result of applying it to the equations of gas dynamics. The most important 
concepts associated with the algorithm for constructing the optimal systems of sub-algebras in 
the case of finite-dimensional Lie algebras are collected together in Section 4. As an example, 
we present the result of the application of this algorithm to the Lie algebra of the &, group 
which is assumed by the equations of gas dynamics in the case of an equation of state of 
general form. Section 5 describes all (apart from similitude) the invariant submodels of rank 
three for “large models” of gas dynamics with a common equation of state. The concluding 
Table 6, which is the normalized optimal system of sub-algebras in the case of the J?& Lie 
algebra, is presented in the appendix. 

1. THE IDEA OF THE SUBMODELS PROGRAM 

In spite of the fact that symmetry properties have always attracted the attention of 
investigators, there has as yet been no complete concept of the systematic use of these 
properties in the mechanics of continuous media. It is noteworthy that, in modern theoretical 
physics, group-theoretic methods play a fundamental role in the investigation of the structure 
of matter (the microcosm) and of the universe (the macrocosm). There is a glaring omission 
regarding this matter in the mechanics of continuous media which has arisen for various 
reasons and quite obviously needs to be made good. 
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Below, we present a brief description of one of the areas of investigation to partially rectify 
this omission in the form of a certain program which has been named the PODMODELI 
(“submodels”) program. 

A system of relationships, consisting of differential equations and supplementary relations 
which describes the characteristics of the distribution of the physical quantities in space and 
their evolution with time is referred to by the term “large model”. The symmetry property of a 
“large model” reflects the fact that the laws of nature built into it are independent of measure- 
ment (reference) systems and expresses the invariance of the values of the principal quantities 
with respect to certain spatial transformations. These transformations form a group. 

Following Lie, we shall say that a system of differential equations E admits of a group G of 
transformations of all the quantities (both the independent and dependent variables) 
participating in E if the system E remains invariant under all transformations belonging to the 
group G. In the case of the equations of mathematical physics and the mechanics of continuous 
media, the classical groups of Euclid, Galileo, Poincare and so on as well as their subgroups 
and extensions, which are permitted by them, are characteristic. Here, the symmetry of a given 
model can be extended in the case of particular forms of the supplementary links (in the case 
of certain relationships). 

A fundamental property of a group G which is allowed by a system E lies in the fact that the 
group G acts on the set of all solutions of E. This is also true for any subgroup H c G. 

Each subgroup H cG. has invariants which are finite and/or differentiable. The establish- 
ment of additional relationships between the invariants of a subgroup H picks out a class of 
exact particular solutions, the so-called H-solutions, from the set of all solutions of E. These 
solutions are expressed in terms of new required functions (invariants) which satisfy the 
system of differential equations derived from E referred to as the factor system E/H. The factor 
system is usually simpler compared with the initial system E and, in particular, this is due to the 
fact that EIH contains a smaller number of independent variables. The factor system E/H is 
therefore referred to as a submodel of the initial “large model” E. The number of independent 
variables in E/H is called the rank of the submodel. In the standard case of a four-dimensional 
space of events, in which system E is defined, the rank of a submodel can take the values 3, 2, 
l,o. 

The majority of known exact submodels in the form of systems of equations of reduced 
dimensions such as one-dimensional, two-dimensional, plane-parallel, axially symmetric, 
spiral, stationary, conical and self-similar systems describe invariant H-solutions. This list is 
obviously incomplete, but the question of how to complete it has remained unclear until 
recently. 

The idea behind the introduction of the PODMODELI program is that, by means of the 
systematic use of the symmetry property of a given “large model” E, one can set up a 
comprehensive inventory (databank) of the exact submodels which are generated by model E 
in the form of classes of H-solutions which are described by the factor systems lYH. 

The realization of the PODMODELI program must lead to the maximal recovery of the 
possibilities which are built into the symmetry properties of “large models” in the mechanics of 
continuous media and thereby to the enrichment of the theory of the phenomena which are 
being described by these models. This enables one to provide a solution to many new specific 
problems, to reveal additional peculiarities of the processes being described, to obtain a broad 
set of tests for the testing of numerical methods and to broaden the field of topics which are 
used in the system for the training of specialists. 

Group theory, the theory of Lie algebras and the group analysis of differential equations 
form the fundamental basis for the realization of the PODMODELI program. The specific 
implementation involves the use of fairly well tested algorithms. Among these algorithms, the 
following are the most important. 

The group classification algorithm acts in case where the given system of differential 
equations E contains an arbitrary element A (such a system is denoted by E(A)) in the form of 
undetermined parameters and functions which are supplementary in E on account of any 
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additional relationships between the basic quantities. This algorithm is required by virtue of 
the fact that the specialization of the arbitrary element A can lead to an extension of the 
allowed group. This algorithm is not only applied to “large models” but also to their 
subgroups of various ranks. The algorithm for calculating the basic Lie group which is 
permitted by system E is a special case of the above-mentioned algorithm. A schematic 
description of the group classification algorithm is given below in Section 3. 

The algorithm for constructing the optimal system of subgroups of G (or sub-algebras of the 
corresponding Lie algebra L) permitted by system E is required due to the fact that submodels 
constructed with reference to the different subgroups Hi and H2 of group G may turn out to 
be similar (equivalent). In this case, all of the H,-solutions are obtained from the HI solutions 
by a certain transformation of the basic quantities (by a change of variables). This occurs when 
the subgroups H, and H, are conjugated (similar) in group G with respect to the internal 
automorphisms of this group. It is therefore important that different submodels should only be 
obtained with respect to different classes of conjugated subgroups. The set of representatives 
of such classes is called the optimal system of subgroups and is denoted by the symbol OG (the 
optimal system of sub-algebras OL respectively). Here, it is also useful to remark that the 
factor system EIH always admits of the normalizer of subgroup H in G, that is, one has “a 
priori” knowledge of the group which is permitted by a submodel. The main points associated 
with the algorithm for constructing optimal systems of sub-algebras of finite-dimensional Lie 
algebras are discussed in Section 4. 

An algorithm for reducing a system of differential equations to an involution is employed in 
the realization of the PODMODELI program. It acts every time overdefined systems of 
equations arise and, in particular, when calculating the basic permitted group, in the group 
classification and in the analysis of partially invariant solutions. This algorithm is not 
considered in the present paper. Further details can be found in [6], for example. 

The PODMODELI program anticipates the performance of a preliminary analysis of the 
qualitative behaviour of the solutions of the resulting factor systems E/H. This attending to the 
submodel (or, as we say, “dressing”) may include a description of the type of system E/H and 
the formulation of the principal boundary-value problems, the study of the structure of the set 
of trajectories, the characteristics, strong discontinuities, etc. 

It is pertinent to note that the process of realizing the PODMODELI program does not 
reduce to the purely applied use of a ready piece of apparatus for mathematical analysis. In 
fact, many new questions and unsolved problems arise during this process, and the treatment 
of these is of general theoretical importance. In particular, this refers to the theory of 
integration of overdefined systems of differential equations with supplementary structure, to 
the general theory of invariants including the differential invariants of Lie groups of 
transformations and to the purely algebraic theory of subgroup (sub-algebraic) structures of 
Lie groups (algebras) 

On the whole, the PODMODELI program is completely realistic but extremely laborious, 
and its use requires a great deal of collective work. It is to be hoped that the PODMODELI 
program will attract the attention and receive the support of the scientific community of 
specialists in the fields of mathematical physics and the mechanics of continuous media. 

2. “LARGE MODELS” OF GAS DYNAMICS 

A “large model” of gas dynamics was chosen for the start of the work using the POD- 
MODEL1 program for a number of reasons. A great deal of scientific experience has been 
accumulated in gas dynamics on various kinds of work with exact solutions. Because of the 
richness of its content, it provides an excellent example for the testing of all the features in the 
implementation of the PODMODELI program. There is a certain store for it [2]. Although 
there is a set of papers which deal with the use of various different manifestations of the 
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symmetry properties of the equations of gas dynamics, the possibilities which are hidden in this 
property are still in need of systematic study. 

We are concerned with the description of the motion of a gas as a two-parameter continuous 
medium when there are no dissipation and external force fields. The initial “large model” is the 
system of differential equations (in dimensionless variables) 

pDu+Vp=O, Dp+pdivu=O, Dp+Adivu=O (2.1) 

where D = 3, + n-V, V = (a,, a,,, a,), u = (u, U, w) is the velocity vector, p is the density and p is 
the pressure. These quantities are functions of the time, t, and the coordinates x=(x, y, z). It is 
assumed that the state function A = A(p, p) is given. The physical meaning of the function A is 
defined by its expression A = PC*, where c is the velocity of sound. 

It should be noted that the last equation in (2.1) is conventionally written with the entropy S 
in the form DS = 0 and linked with the equation of state p = F(p, S). The two forms of writing 
the equation are equivalent, subject to the condition that F’ f 0. The assumption that F, = 0 
leads to the treatment of a class of isentropic motions of the gas (the unfortunate term 
“barotropic gas” is frequently used) and must be the object of an independent study. 

The nine-dimensional space Z?‘(t, x, u, p, p) is the basic space in the case of system (2.1). It 
is known [2] that, with functions ACp, p) of a general form, system (2.1) permits an ll- 
parameter Lie group C;,, of transformations of the space Rg which is generated by ~~~~~~e~ 
(translational) transformations with respect to the variables t, x: t -+ t c to, x -+ x+x0, Gatilean 
translational transformations in the direction of the axes x :x + xe ud, u + u + uo, rotational 
transformations in the subspace R6(x, u) :+&-,x, u -+ S,,u and homogeneous extensions 
(homotheties) of the subspace R4(t, x): t +$t, x-+ k,x. Here, to, x0, II,,, k, are arbitrary 
parameters and S,, is an orthogonal (3x3)-matrix with a determinant S,, = 1. Algebraically, 
group t;ll is a Galilean G,, group expanded by means of a one-dimensional group of homo- 
theties. Moreover, system (2.1) permits two discrete transformations (~nvoZ~tio~s) I, :(x, 
u) -_)(-x, -u), 12 :(t, u) 4(-t, -u) which correspond to a change in the orientation (I,) of the 
subspace R6(x, u) and time inversion (Q. 

The Lie algebra Z&, corresponding to G,,, of the operators defined in the space Rg 
participates in the specific calculations. The operators Xj (i = 1, . . . ,ll>, which are respectively 
selected by the transformations listed above 

x, =a,, x2 =ay, x,=a, 
x.$=ra,+a,, x,=ra,+a,. x,=ra,,+a, 
x7 = 3, -zaa,+ti,-wa,, x,=2a,--~az+wa,--~a, 

x,=~ay-yarffdu-d,, x,O=a, 

~,,=ta,+~a,+~4,+~a, 

(2.2) 

form a basis in &,. 
From the point of view of group analysis, the function A@, p) in system (2.1) is treated as an 

arbitrary element with respect to which a group classification of this system has to be carried 
out within the framework of the PODMODELI program. This means that one has to find all 
such forms of the function A@, p) (apart from equivalence) with which an expansion of the 
group G,, occurs. This classification is basically known [2]. Some of its details are presented as 
an example in Section 3. Here, only the refined results are communicated. 

The operators 

~+a,-ua,-~,-wa,+2pa,, ~,=pa~+pa,, y3=ap 

y4 = t*a, + aa, + @a, + fza, + tX - tu)au + (y - p)au + cz - wa, - 3tpa, - w, (2.3) 
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which are additional to (2.2) participate in expansions of the ~5,~ Lie algebra. 
A summary of all cases of expansion is given in Table 1. The numbers of expansions are 

given in column N, the forms of this function which produce an expansion of h,, are shown in 
column A while column p contains the corresponding forms for the conventional represent- 
ation of the equation of state p = F(p, S). The numbers in column k denote the dimensions of 
the expanded Lk algebras. The operators in the notation of (2.3) which augment the Z& basis 
(2.2) up to a basis of an L, Lie algebra are written out in column Y. The arbitrary entropy 
function is denoted by the symbol 3 that is, 3 = 3 (s), and f is an arbitrary function of the 
above-mentioned arguments which is different in the different cells of the table. 

Among the “large models” of gas dynamics listed in Table 1, widely known models are 
encountered which have been the subject of numerous investigations. Apart from the common 
model N = 1, we may mention the model N = 6 of a polytropic gas and its special case N = 7. 
The model N = 13 contains a general model of an ideal gas. The case N = 4 is distinguished by 
the special properties of this model in the case of steady gas flows [5]. The exotic model N = 13 
describes a gas with zero velocity of sound. Regardless of its physical meaning, it is 
distinguished by the fact that the group permitted by it is infinitely dimensional on account of 
the allowed operator Y, = pq’@)ap + cp(p)a, with an arbitrary function <p(p>. Moreover, some of 
the “large models” which have been found such as N = 2, 5, 9-12, for example, have not been 
studied in any detail. 

As a result, it is found that, in the implementation of the PODMODELI program as applied 
to gas dynamics, 13 “large models” have to be considered. This work was begun in the case of 
the model N = 1 which is discussed in this paper. 

3. GROUP CLASSIFICATION 

Let a certain system of differential equations, defined in a basis space R”‘“(z), where z= (x, y ) and 
x=(x1, . ..) x”) is a set of independent variables while y= (y’, . . . , y”) is the set of required functions, 

contain an arbitrary element A = (A’, . . . , AP), the components of which, A’, may be functions of z and 
obey certain additional conditions. This system is denoted by E(A) and the additional conditions by 

Q(A). 
The problem involves finding the group of transformations of the basis space R”‘“(z), which are 

permitted by the system E(A) in the case of an arbitrary element of general form which solely satisfies the 

conditions Q(A) for all possible specializations of A which lead to expansions of the permitted groups. 

Table 1 

N 

1 

2 

3 
4 
5 

6 

7 

8 

9 
10 

II 

12 

13 

A 

Ap. I-J) 

PfcPP-’ )? Y + O?l 
PJWP) 

IW 
PAP) 

-p. y+o.5/3 

(5LvP 

f (Pc-p) 

h-0 

ypr. y+O,l 

P 
I 

0 

P 

APT 3) 

PTf (3P) 

MM 

AW) 
tip) 

3PT 

3P 
513 

In P +flw) 

Ap)+3 

p7+3 

P+3 

Inp+s 

3 

k Y 

I1 - 
12 CY-ou, -2vY* 

12 v, 

12 Yl 
12 u, -2Yz 

13 u,* u, 

14 v, * Y* 9 Y, 

12 u, +2y, 

13 u, 

13 (7-W -2v2. v, 

13 v,’ v, 

13 u, * v, 

Q1 v,* YI 
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For simplicity in the discussion below, this problem is considered for systems E(A) of the first order 
and additional conditions n(A) which also contain derivatives of A which are no higher than of the first 
order. In this case, the initial equations can be written in the form 

E(A): E(z, ,A(z)) = 0; R(A): R(z,A, (11) = 0 (3.1) 

where the combined sets of all the main quantities and their first derivatives are denoted by the subscript 
1. Together with Eqs (3.1), we introduce an auxiliary system of equations 

E(a): E(z, ,a) = 0 (3.2) 

with the arbitrary quantities II = (al, . . . , up), which are substituted into E(A) instead of the correspond- 

ing functions A( 2). The algorithm for solving the problem which has been posed can be conveniently sub- 
divided into four stages. 

The conditions for the invariance of the equation E(u) with respect to single parameter groups of trans- 

formations of the space R”‘“(z)x RP( a are formed during the first stage. The operators of these groups ) 

are sought in the form 

x0 = k’a, + k"a, = cxa, +5 ya, + k”a, (3.3) 

where the coordinates 5’ depend solely on z, and the coordinates 4” may be functions of the variables z 
and a (the possible generalization when 5’ is allowed to be dependent on a is not considered here). A 

scalar product, that is, the sum over all values of a repeated index &3, = v’a, +~“al, + . . . +E,““ax. and so 
on, is denoted by a dot in expression (3.3) and below. The condition for the invariance of E(a) has the 

form (see [2], for example) 

xpcz, ,a)lE(o) = 0 (3.4) 

where X; is the first continuation of the operator X” in the arbitrary y, = (y:, , . . , yJ) and is written as 

xp = x0 + gyx ay, (3.5) 

The coordinates of the extended operator are calculated using standard formulae (a sum over x’ = x1, . . , 

X”) 

gy” = D,{y - yx,Dx$x’. D, = a, + y,a, (3.6) 

for each x=x1, . . . , x” and each y=y’, . , . , y”. A system of equations DE(a) in the required 

coordinates of the operator (3.3) is obtained from (3.4). This consists of two subsystems and, in fact, 

DE(a)= DE, u DE,.The equations DE,, do not contain the variables a or 5” while the equations DEn 

contain a and relationships of the form 

mot0 = 1,~’ (3.7) 

in which 1, are linear (inhomogeneous) differential operators with respect to the variables z, which act in 
5’ and m, are certain functions. Moreover, /, and m, depend on z and a. 

The group of equivalence transformations of equation E(a) which also preserve the additional 
conditions Q(e), which the vector a = A(z), must satisfy and are written in the form 

Q(a): R(z,a,) = 0 (3.8) 

is calculated during the second stage. 
The invariance condition n(a) has the form 
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qqz4q )I,(,) = 0 (3.9) 

in which the extension Yp of the X” in the arbitrary a, = (a:) is used. This extension has to be calculated 

using the formulae 
vp =x” +SazaOz 

5’2 = 0,‘s” +a,.D~5”, 0,’ =ar +a,.a, 
(3.10) 

The invariance condition (3.9) yields an additional subsystem of governing equations D’R,. Further- 
more, the fact that the coordinates 5’ are independent of the variables a is taken into account. As a result, 
one obtains the complete system of governing equations 

DE0 v DE, u D+R, (3.11) 

for the coordinates of the operators 

X= =y(z).a, +5”(zdW, 

which generate the group of equivalence transformations of the system of equations E(a)uSZ(a). 
According to general theory [2], the kernel of the principal groups of equation E(A), that is, the group 

which is permitted by these equations for arty function a = A(z) which satisfies the additional condition 
R(A) = 0, is contained in the group of equivalence transformations. The kernel is therefore defined by 
Eqs (3.7) in which it is necessary to put 5” =a$ and, in the resulting equality, to pass into a manifold 
specified by the equations O(a). 

It is pertinent to note that the kernel of the principal groups is always an invariant subgroup of the 

group of equivalence transformations. 
The third stage involves the construction and solution of the governing equations of the coordinates of 

the operators XA which are permitted by the system E(A)uQ(A). A part of these equations, DE,,, in 

fact, has already been obtained during the first stage. The remaining parts are simply obtained from the 

subsystem DE, u D+Q, by substituting a = A(z) and replacing the coordinates 5” in relationships (3.7) by 

the expressions 5” = A&‘. As a result of this, they transform into the equations 

D+R, : tnA~Ar~~L =lz.g2 (3.12) 

The system of governing equations obtained by this means 

DE0 w DE* v D+Q, (3.13) 

is a system of differential equations in the required coordinates 5’ of the operator XA. 
Generally speaking, the problem of constructing a general solution of the system of equations (3.13) is 

non-trivial. The search for this solution is facilitated by the existence in the case of system (3.13) of a 
number of special properties. Firstly, the system is linear and homogeneous and, as a rule, is strongly 
overdefined. Secondly, system (3.13) is invariant with respect to the group of equivalence transformations 

constructed during the second stage. Furthermore, it is known beforehand that the commutator of any 
two solutions of this system is again its solution and that the operators of the kernel of the principal 
groups found during the second stage yield its particular solutions. 

One usually proceeds in the following manner: initially, if possible, one finds the general form of the 

coordinates c, which satisfy the equations DE,,. By virtue of linearity, these coordinates are represented 
in the form of linear combinations of certain functions cp(z) which are arbitrary up to now (and which 

may also be arbitrary constants). The representations obtained are substituted into the remaining 
equations DE, u D’R, which thereby become equations in the functions cp which form an overdefined 
system DE,(q). The system DE,(q) is subsequently brought into involution, that is, it is represented (as 

a rule, by means of an extension) in such a form that the width of the general solution is explicitly 
determined. The process of bringing into involution is associated with the formation of compatibility 
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conditions and, generally speaking, can branch depending on the actual form of the function A(z) 

occurring in the system DE,(q). The general solution of the system of governing equations with each 
fixed function A(t) yields all the operators X” which generate the widest (principal) group which is 
permitted by the system E(A). 

The group classification of the systems E(A) is carried out during the fourth stage. This classification is 

associated with the above-mentioned branching during the process of involution. Each branch gives rise 
to the need to take account of the fact as to whether certain differential expressions d(z, A) in the 
function A are equal or not equal to zero. The alternative equations 

d(z, A) = 0 (3.14) 

which arise in this case are classifying equations: actually, they pick out the possible expansions of the 
permitted group. 

According to the construction, the group of equivalence transformations acts on a set of solutions of 
the classifying equations (3.14). This enables one to pick out their characteristic solutions which have the 
simplest analytic form. 

Finally, for each solution of Eqs (3.14) which has been picked out, a general solution of the system 

DE,(q) is found. This also yields the operators XA which generate the principal group permitted by the 
system E(A) for the corresponding form of the “arbitrary element” A(z). The final result of the group 

classification is represented in the form of a table containing all the cases of the expansion of the kernel of 

the principal groups. 

Actually, the group classification of “large models” E(A) of gas dynamics (2.1) represented in Table 1 

was obtained by means of this algorithm. Here, the “arbitrary element” a=A(p, p) satisfies the 

additional conditions 

R(A): A, =A, =A, =0 (3.15) 

In the first stage, the required operators are written in the form 

where 5’. 3, = ca, + ~yily + ~‘a, and so on. Here and henceforth, derivatives with respect to corresponding 

variables are denoted using subscripts. 
The well-known criterion [3] shows that system (2.1) is “x-autonomous” for any A, that is, the 

coordinates c, 5’ may depend solely on the variables t, x. When account is taken of this and subject to 

the condition that a # 0 the subsystem DE,, reduces to the following. The coordinate 5’ is independent of 
x and is solely a function oft. The coordinates 5’ satisfy the equations 

g=+g; g+g=o, g+g=o, g+g=o (3.16) 

All of the second-order partial derivatives of these coordinates with respect to the variables t and x are 

equal to zero apart from the mixed derivatives k:, = t:, = t:, which satisfy the equation 

25: = s:, (3.17) 

The coordinates 5’ and cp have the actual expressions 

(3.18) 
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Finally, the coordinate 5’ does not depend on the variables x, u and p, that is, it is solely a function of t 
and p and satisfies the equations 

gp = 0, SF, +%:I = 0 (3.19) 

Equations (3.16)-(3.19) also constitute the subsystem DE,,. The subsystem DE, reduces to the 

equations 

The second stage (the calculation of the group of equivalence transformations) reduces in this case to 

taking account of the fact that the function 5’ and 5’ are independent of a, which yields 6: = 0 and 
k:, = 0. All of the second-order derivatives of the coordinates c, 5’ are therefore equal to zero. As far as 
the additional conditions L?(a) are concerned, which have the form a, = a, = a, = 0 here, the condition for 
their invariance, which is readily verified, is identically satisfied. The construction of the general solution 
of the resulting system of governing equations which already occurs in involution is carried out auto- 
matically. As a result, one obtains a 1Cparameter group of equivalence transformations generated by the 

operators XA with the coordinates 

5’=C,o+(C,,-J4)t 
5” =c, +C,t+C,,x--C,y+C,z 

kY =c, +c~t+c~x+c,,y-c,z 

5” = c, + Cbt - c*x + c,y+ c, IZ 

t,“=C4+R,u-Cgu+Cgw 

E,” =C, +R,u+C,u-C,w 

5” =C6+R,w-C8u+C7~ 

Sp =(2R, +R,)P; 6’ = Rz + R3p; 5” = R3a 

(3.21) 

where Ci, R, are arbitrary constants. 
The kernel of the principal groups is distinguished by the expression 5” = Spa, + Efa, which reduces to 

the equation 

(R2 + R3p)ap +(-2R, + R3)ap = 0 

which, by virtue of the arbitrariness of the quantities up, aP yields R, = Z$ = & = 0. The kernel is therefore 
determined by the constants C, in (3.21) and is identical with the group G,,, the operators of which are 

written out in (2.2). The factor group with respect to this kernel is generated by operators corresponding 
to the constants R, 

xp = -ta, +Ua, + duau + wa, + 2pa, 

x; =ap, x3” =pap +pa, +aa, 
(3.22) 

The equivalence transformations of the “arbitrary element” A which follow from here form a 3-parameter 
group which acts according to the formulae (a transformed quantity is denoted by a prime) 

p’=a3p+a2, p’=ala3p. A’=a,A (3.23) 

with arbitrary parameters ai and a, > 0 and a3 > 0. 
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In the third stage, it is assumed that a = A(p, p) and 5” = 5” = A,cP +A,cP in (3.20) which leads to the 
equations 

5; + 3Ac;, = 0, A$ + A,SP = At; (324) 

Together with (3.1.5)-(3.19), they also form a complete system of governing equations for the operators 
which are allowed by system (2.1). 

In order to bring this system into involution, account is first taken of the fact that the quantity c:, is a 
constant. Let kc, = B,. It then follows from the first equation of (3.19) that 5’ is a linear function of p and 

one can put 

SF =cp(r)+yr(r)p (3.25) 

Then, for 5’ in (3.18) we obtain the expression 

(3.26) 

The remaining equations of (3.19) and (3.24) reduce to the following (derivatives with respect to t are 

denoted by primes) 

W’=-5B0, #=-(3A-5p)B,, 

(~P+wP)A, +(w+25: -25:)pA,, =wA 

(3.27) 

(3.28) 

Differentiating (3.28) with respect to t and taking account of (3.27) and (3.17) we obtain the equation 
(3AA, +3pA, -5A)B, = 0. On the other hand, the equality (3A, -5)B, = 0 is obtained by differentiating 
the second equation of (3.27) with respect to p. As a result, one obtains the compatibility conditions for 

the governing equations 

(3A, -5)Bu = 0, APB0 = 0 (3.29) 

which give rise to branching of the solution process: either B,, = 0 or B, # 0. 

If B, = 0, it follows from (3.27) that cp’ = w’ = 0 and, moreover, all second derivatives with respect to the 

coordinates c, 5” are equal to zero. In this case 5: and 5: are constants. Let 5: -5: = O. Then, Eq. (3.28) 

rewritten in the form 

‘pAP + y(pA, + PA,, -A) + 2wpAP = 0 (3.30) 

is unique and the group constants cp, v, o must satisfy it. By virtue of (3.30) not more than two of them 
can be free. It means that, in this case, the kernel (2.2) can only be expanded in not more than two 

operators. The subsequent analysis of the expansions of the kernel of the principal groups is solely 
associated with Eq. (3.30) and the use of the equivalence transforms (3.23). This can be carried out using 

various specific methods (see [2], for example). As a result, all cases of expansion listed in Table 1, apart 

from the case N = 7, are obtained. 
If B, # 0, it follows from (3.29) that A,=, and 3A, = 5 whereupon A = 5p/3+C, where C = const. The 

constant C can be made equal to zero by means of the equivalence transformations (3.23). This yields the 
classification case A = 5~13 which corresponds to N =7 in Table 1. For this function A, cp=O, is 
obtained from (3.28) and w = -5B,,t+ R, from (3.27). Moreover, here we shall have 5: = B,t+ C,,, and Eq. 
(3.17) can be integrated with respect to t in the form 5’ = B,? +(Cll -R,)t+C,,. The kernel is therefore 
expanded by the operators Y,, Y2 and Y, by means of the constants R,, 4 and B,, respectively. The 
group classification of system (2.1) with respect to an “arbitrary element” A(p, p) is concluded. 
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4. OPTIMAL SYSTEMS OF SUB-ALGEBRAS 

In order to calculate all of the submodels of gas dynamics which can be obtained on the basis 
of the symmetry properties mentioned in Section 2, a classification of the subgroups of the 
allowed groups, apart from conjugation, has to be carried out for each “large model” from 
Table 1. Here, the solution of this problem is demonstrated using the example of the G,, group, 
which is allowed by Eqs (2.1) with an equation of state of general form. Actually, an equivalent 
problem on the classification of the sub-algebras of &,, Lie algebra with a basis (2.2) is solved. 
Here, we make use of certain general corollaries from the theory of Lie algebras. The reader 
may familiarize himself with these using various books (see [7], for example). 

In the general case, a finite-dimensional Lie algebra L of dimensions n over a field of real numbers with 
abasis X,, . . . . X, and a table of commutators [X,, X,] = CiXk (i, i = 1, . . , , n) is the initial object. The 
augmented group A of internal automorphisms of the Lie algebra L is calculated using this table by 
integrating a system of Lie differential equations. 

Group A acts on a set of sub-algebras Kc L by virtue of which this set is separated into classes of 

coupled (similar) sub-algebras. The set of representatives of these classes (one each from each class) is 

called the optimal system of sub-algebras and is denoted by the symbol 0,L (the index “A” will 

sometimes be omitted for brevity). 
A considerable amount of work including both purely algebraic operations for the separated classes of 

Lie algebras and their sub-algebras as well as operations with an applied trend in the case of the actual 
low-dimension Lie algebras (see [S-12], for example) is involved in the solution of the problem of 
constructing 0,L. 

The construction presented below is based on the use of certain special constructions [4]. The use of a 
composite series of ideals and the expansion of a Lie algebra L =J@ N into a half line sum of a 
characteristic ideal J and a sub-algebra N with a corresponding expansion of the group A = A,A, belong 

to such special constructions. 

A two-stage algorithm is operating in which the optimal system MANN = {N, I p E P) is constructed and 
the stabilizers A, c A of the sub-algebras N, are determined during the first stage and the optimal 

systems O,P(J + NP) = (K,, I q E Q,} are determined during the second stage. The required optimal system 
is given by the union 

The calculations are carried out in a coordinate representation Ha = x:X, of the bases H,(cx = 1, . . . , r) 
of the required sub-algebras in the form of matrices k=llx: II taking account of the action on these 
matrices of the group B of transformations of the basis. The construction of 0,L thereby reduces to 
calculating the optimal system of matrices (which satisfy the equations of the sub-algebra) O,[{] with 
respect to the action of the group G = AB. 

The additional requirement that the required optimal system should be normalized means that, 
together with any sub-algebra, its normalizer Nor,K E 0,L also. It is known that this quite rigorous 
requirement can always be satisfied [9]. The greatest possible number of null coordinates in the matrix 

representation of the bases of the sub-algebras has to be obtained. Coordinates which remain undeter- 

mined must be the invariants of the participating subgroups of group G. 
The result of the calculation of the optimal system of sub-algebras is usually represented in the form of 

a table of sub-algebras with an indication of their bases. A more obvious (and convenient in practice) 
graphical representation is also possible in the case of a normalized optimal system OL. This is based on 
the fact that each sub-algebra belongs to a branch of ideals K, + K2 + . . . + K,, in which K,,, = NorK, 
(i=l, . . . . m-l), and the sub-algebra K, is self-normalized, that is, NorK, = K,, and the sub-algebra 
K, is terminal in the sense that the normalizer of any of its characteristic ideals is not identical to K,. 
Arrows indicate the embedding of sub-algebras. Each self-normalized sub-algebra is like a root into 
which certain branches of ideals may enter forming a “cluster of ideals” with a common root. A normal- 
ized optimal system OL can thereby be depicted in the form of a “thicket of ideals”, that is, the combina- 

tion of all the clusters of ideals belonging to it. 
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Below, as an example, we consider the process of constructing the optimal system CM.,,, in 
the case of the Lie algebra &, with a fixed basis (2.2). 

The table of commutators for &,, is written out in the form of Table 2 where, for brevity, the 
basis elements Xi of (2.2) are replaced by their numbers i and the symbol -i replaces -Xi. 

The following composite series is immediately picked out and recorded using Table 2 

oc~x,,x*,x,Jc~x,,...,x,~~tx,,...,x,J~~x,, . . . . X,*lc~, (4.1) 

The group of internal automorphisms A is generated by the basis (l~x~l)-matrices Ai( 
which depend on the parameters a, (i = 1, . . . , 11). The result of the action of these matrices on 
the column vector x = (xi) from the coordinates of a common element X = xiXi is shown in 
Table 3 which has been constructed according to the following rules, A subdrvrsion of the 
vector x into subvectors (projections of x) is introduced in accordance with the factors of the 
composite series (4.1) 

p, =(_J,x2,x3), p* =(x4,.x5.x6). p3 =~x7J8J9x P4 =x’O* ps =x1’ 

The parameters of the generating matrices Ai are grouped in a similar manner 

e, =G4,a2,n3), e2 =(a4,a5,qi), e3 =G-+.q+@, e4 =a,,, e3 =ql 

The following notation is introduced for products of automorphisms 

T = A,A2A3r l-=A,Ap&, (s@4)xE2 =A&% A,otA,, 

Table2 

1 2 3 4 5 6 7 8 9 10 11 

1 0 0 0 0 0 0 0 -3 2 0 1 
2 0 0 0 0 0 0 3 0 -t 0 2 
3 0 0 0 0 0 0 -2 1 0 0 3 

4 0 0 0 0 0 0 0 -6 5 -1 0 
5 0 0 0 0 0 0 6 0 -4 -2 0 
6 0 0 0 0 0 0 -5 4 0 -3 0 

7 0 -3 2 0 -6 5 0 -9 8 0 0 
8 3 0 -1 6 0 -4 9 0 -7 0 0 
9 -2 1 0 -5 4 0 -8 7 0 0 0 

10 0 0 0 1 2 3 0 0 0 0 10 
I1 -1 -2 -3 0 0 0 0 0 0 -10 0 

Table3 

Pi Pi P; Pi Pi 

T 

I- 

s 

Al0 

All 

El 

E2 

pI +qP3+ct AP3 

PI -C2P4 

SPI 

pl + e4p2 

e5pl 

-PI 

PI 

p2 

P2+e2hp3 

SP2 

P2 

P2 

-P2 

-P2 

P3 

h 

SP3 

P3 

P3 

P3 

p3 

P4 

P4 

P4 

~4 +e4P3 

w4 

P4 

-P4 

P5 

PS 

PS 

P5 

PS 

PS 

PS 
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Here, S is a general (3 x 3)matrix of rotations in a three-dimensional space R’, Ek are unit 
(k x k)-matrices and the action of the remaining matrices has been explicitly indicated. Corres- 
ponding projections of the transformed vector x’= Ax are denoted by a prime. The discrete 
automorphisms %$, gz, induced by the involutions Z1 and I, from Section 2 are added in 
Table 3. The symbol A denotes a conventional vector product in R3. 

The expansion L.,, = J @ N, is used in the construction of OL,,,, where 

J = (X,,...,X,), N = tX7,Xs,X~~X,ovX,,l 

It is obvious from Table 3 that a corresponding expansion of the augmented group 
A = A,AN (without taking account of the involutions Si) holds with A, = ZT and A, = SA,,A,,. 

The normalized optimal system O,“N has to be constructed during the first stage. Use of the 
composite series for N 

enables one once again to apply the expansion procedure N = J’ @N’, where J’ =(X,, X8, 
X,) and N’ = {X,,, X,,}. Here, the action of the augmented five-parameter group Ai is 
described by the block in Table 3 which corresponds to the rows 5, A,, and A,, and columns 
p;, pi, p& The expansion of the group AL = A,,AN, holds with A,, = S and A,, = A,,. 

The constructions of MANN is carried out in two substages. In the first substage, it is 
necessary to find the normalized optimal system 0, ,N’ of sub-algebras which is equivalent to 
the construction of the optimal system O,,(c) of matrices 

with respect to the action of the group G’ = A&,. Since the rank R(c) of the matrix c is an 
invariant of the group G’, the construction should be carried out using values of this rank. If 
R(c) = 2, the matrix c is reduced to a unit matrix by the obvious Z3,-transformations. In the 
case R(C,) = 1, when the matrix 6 consists of a single row, there is an “a priori” possibility of 
two reduced forms of this matrix: (p, 1) and (LO). However, the first of these is reduced to (0, 
1) by means of the automorphism A,, (see Table 3). Finally, when R(c) = 0, the matrix c is a 
null matrix. So the first substage yields the optimal system OAN, N’ = (N, Ip = 1, 2,3,4) 

Ni =(XiO,X,,}, N2 =1X,,}, N3 =W,,L N‘, =I01 (4.2) 

In the second substage we consider (5 x5)-matrices with a block structure 

where c is one of the submatrices corresponding to (4.2) and the block $ follows after the 
first non-null row in c. Here, a new discrete invariant R(q’), arises which is equal to the rank 
of the (3 x 3)-submatrix II* for which the values 3,2,1,0 are possible. 

If R(q’) = 3, the submatrix I$ is reduced to a unit matrix by means of the B-transformations 
while the submatrix 1’ is reduced to a null matrix. Together with (4.2) this yields the sub- 
algebras 

Ns =IX,,X,,X,,&.X,,l, N6 = tX,,X,.JLX,,l, 

N, =IX,,X,,X9,&,,), Ns = tX,,X,,X,) 

An additional condition is subsequently used: if a single rotational operator occurs in the 
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basis of a sub-algebra, it is reduced to X, by means of the automorphism S and the B- 
transform, 

It is readily verified that the value R(q’) = 2 is found in contradiction with the equations of 
the sub-algebra (ES). Let R(q2)= 1. Then, the subvector n2 =(x7, x8, x9), according to the 
additional condition, is reduced to 7’ = (1, 0, 0). After the obvious B-transformations and use 
of the ES, it turns out that the submatrix IJ’ is a null matrix in all cases of (4.2). 

This yields the sub-algebras 

Finally, with R(n2) = 0 the matrix ?j2 is a null matrix. In this case, it follows from the ES that 
the rank I?($) of the submatrix n’ cannot be equal to two. If Z?($) = 0, that is, TJ’ = 0, then the 
sub-algebras (4.2) are obtained. If, however, R(n’) = 1, then the non-null row in ql, according 
to the additional condition, reduces to (p, 0, 0), where p f 0. Then, in the case of its combina- 
tion with Ni from the ES, it follows that a non-null row n’ can be found in one row only with 
X,, which yields the sub-algebra N1, = {X,,, X7+oX,,). Similarly, with N,, one obtains the 
sub-algebra N14 = (X7 +oX,,), and, with N3, the sub-algebra @X7 +X1,} which is reduced to 
N,, = (X,+X,,) by the automorphism A,,. Finally, with N,, one obtains the sub-algebra N13 
which is already known. 

At this point, the first stage in the construction of Oh,, is concluded and the optimal system 
MANN has been calculated. It contains 15 representatives, two of which form one-parameter 
series. The result of this construction is shown in Table 4 of sub-algebras N, (J = 1, . . . , 15), 
where the bases of the sub-algebras are only written symbolically using the numbers of the 
corresponding operators of the basis (2.2). Here, the symbol 7 + all denotes X, + oX,, and so 
on. 

The resulting optimal system MANN is normalized. The numbers p of the normalizers of the 
sub-algebras N, in N are indicated in the third column of Table 4 where self-normalized sub- 
algebras are labelled with the symbol =p.The stabilizers A, of the matrices nP, which 
correspond to the sub-algebras N, are shown in the final column. They are directly found 
from Table 3. Here S, is the matrix for rotation about the first axis and the automorphism 
which acts on the (3 x 3)matrix M according to the formula ZM = S-“MS. is denoted by the 
symbol C. 

The thicket of ideals which corresponds to Table 4 is shown in Fig. 1. Here, it is very obvious 
that the separation of the sub-algebra {7} from the series {7+o?llj is motivated by the difference 
in the normalizers in N. As far as the separation of the sub-algebras {7, 10) is concerned, this is 

Table 4 

P Basis Np Now% Ap 

2 

3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
1.5 

7, 8, 9, 10, 11 
7,8,9, 11 
7, 10, 11 
10,7+all (a#O) 
7, II 
7+all (a+O) 
7, 8,9, 10 
7, 8.9 
7,lO 
7 
7+ 10 
10,ll 
11 
IO 
0 

= 1 
=2 

= 3 

3 
=5 

5 

2 
1 
1 
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induced by the difference between the normalizers of these sub-algebras in the whole of the Lie 
L” algebra. Self-normalized sub-algebras are picked out by putting them in double frames. 
The numbers r denote the dimensions of sub-algebras. 

In the second stage of the construction of Oh,,, the matrices 

are successively considered for each p = 1, . . . , 15. These consist of 11 columns and r Ill rows 
which are subdivided into blocks in accordance with the composite series (4.1). The block 
submatrices 5’ each have 3 columns and I3 rows and qI, is a matrix which corresponds to the 
sub-algebra N, from Table 4. 

The second stage involves the construction of the subsystem 0, (e,} of matrices 4, for each 
p=l,..., 15 that satisfy the conditions of the sub-algebra (CS). fiis subsystem is optimal with 
respect to the action of the group G, = ApBp, where A, are the stablilizers indicated in Table 3 
and BP c B is a subgroup of the group of B-transforms which leave the submatrix q, at the 
site. 

Here, it is inadvisable to describe every detail of the execution of the second stage in view of 
its monotony and tediousness for the reader as well as the fact that it is practically impossible 
here, since such a description requires many pages. It is pertinent solely to note the following 
main features of its construction, 

The ranks of the submatrices R(c4) and R(k5) are invariants of any G,-transformations. 
Since each of them can take four values 3, 2, 1 and 0, sixteen dissimilar forms of constructing 
the matrices 5, arise. Each of the matrices c4, 5” is first reduced to certain standard forms 
(there is a certain arbitrariness in the choice of these) by means of G,-transformations. Those 
of these forms which do not satisfy the ES with T$, are then discarded. The remaining forms 
serve as a basis for the final reduction of the matrix 5, using G,-transformations and 
separating out the actual representatives in the required optimal system. The property of 
normalization is traced during this process by means of a sequence of analyses from the 
smaller dimensions to the larger and systematic calculation of the normalizers of the resulting 
sub-algebras. 

0 +$------_-_--___-----__-_ 

t 

Fig. 1. 
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As a result of carrying out the second stage, the normalized optimal system Oh, of the sub- 
algebras of the J?,,,, Lie group with the basis (2.2) is obtained. This is presented in the appendix. 

5. INVARIANT SUBMODELS OF RANK THREE 

In the case of the PODMODELI program, the ordering of the submodels by the 
introduction of certain way of labelling them is important. In the case of gas dynamics, a 
notation for the submodels with a two lower-case letter matrix index is proposed. The “large 
models” from Table 1 are denoted by 

IA.\ 
1 

ii k 
, k = 1 I..., 13. 

The submodels of rank three of a “large model” 

4 0 k 

are denoted by the index 

while the index 

, 1 = 1, 2 ,..., 

, m = 1, 2,... 

is used for submodels of rank 2 and so on, where the numbers I, m, . . . are taken from the 
corresponding tables. 

In this section we present a preliminary description of the submodels 

4 3 ( 1 1 f 
, 1 = 1,..*,13, 

which are obtained with respect to single-parameter subgroups which correspond to the sub- 
algebras ,?& from Table 6 (see the appendix). The submodels with respect to the sub-algebras 
with numbers I = 7, . . . , 13. which do not contain a rotational operator, are written in Cartesian 
coordinates. The rotational operator X, is contained in the sub-algebras with I= 1, . . . , 6 and 
it is more convenient to represent the corresponding submodels in cylindrical coordinates 
which are introduced by the following relationships. 

The independent variables will be t, x, r and 8 where 

y=rcose,z=rsine;r= y +Z ,e=a& J-“‘i--I- y P.1) 

The components of the velocity vector u = u, = (u,, u,, w,) are introduced by the formulae 

UC =u, U, = ucos6+ wsinQ, W, = -usme+ wc0se 

c=t 
u=uc, u=~ccOsQ-wcsinQ, w=u,sinQ+w,cosQ 

Here, U, is the radial component of the velocity (in the y, z plane) and W, is the peripheral 
component of the velocity vector. The notation used for density and pressure remains as 
before: p and p. 

The initial system of equations of gas dynamics (2.1) takes the following form in cylindrical 
coordinates: 

Qu, + p-‘v,p = r-I (0, w;, -U,W,) 



The “PODMODELI” program. Gas dynamics 

D,p+pdiv,u=O, D,p+Adiv,u=O 

617 

(5.3) 

where 

V, = @,,a,,r-‘de), div, u = II, + u, + f-‘& + ‘-‘Wee 

D, = 3, + u,v, = a, + I& + &a, +&&I 

In the cylindrical coordinates (5.1), (5.2), the basis operators X, and Xi, involved in the 
construction of submodels of rank three will be X, = &,, X1, = r& +x3, = ra,, while the remain- 
ing coordinates do not change. 

The general rule for constructing invariant H-solutions is as follows [2]. The independent 
invariants of group H are found which, generally speaking, are chosen with a certain arbitrari- 
ness. Relationships are then established between these invariants of such a kind that the 
invariants-the required quantities are designated as functions of the invariants-ndependent 
variables. These functions will also be new required functions in the submodel-the factor 
system E/H. It is formulated after the expressions for the initial required quantities, obtained 
from the relationships between the invariants, have been substituted into the initial system E. 

A list of the sets of invariants subsequently used for all of the 13 submodels 

4 3 

( 1 1 k’ 

is given in Table 5 where the number k is shown in the first column. In the second column, it is 
recalled that submodels with k = 1, . . . , 6 are treated in cylindrical coordinates (C) while 
submodels with k= 7, . . . , 13 are treated in Cartesian coordinates (D). The operators of the 
single-parameter subgroups H,, from which the invariant H,-solutions are constructed, are 
presented in the third column using the notation of (2.2). The invariant independent variables 
are written out in the fourth column, and those of them which differ from the initial variables 
are given the subscript 1. The notation U = (V, V, W), p, p is adopted for the new required 
invariant magnitudes of the velocity vector, density and pressure. Here, in all submodels 
V = u,, W = w, (in C coordinates) or V = II, W = w (in D coordinates), and p and p are 
invariants. For this reason, only the expression for the invariant component of U is explicitly 
given in the fifth column. 

The actual factor systems for all submodels of rank three according to Table 5 are presented 
below. As was stated at the beginning of this paper, the PODMODELI program also 
presumes a general analysis (“dressing”) of the resulting submodels. However, this task is 
outside the scope of this paper and must be the subject of subsequent publications. Here, we 
shall merely point out the descriptive characteristics of the corresponding motions of the gas 
and note their purely geometrical structure, which is determined by the level lines of the 
invariants. In the case of invariant submodels of rank three, these lines play the same role as 
points in the event space R4(t, x) in the case of the “large model”. 

A curve 9Z in the space R4(r, x) along which the independent variables in the factor system 
(invariants) maintain a constant value is referred to as a level line of the invariants. The set of 
all level lines of the invariants is denoted by the symbol {%‘I. 

The enumeration proceeds in the reverse order with respect to Table 5 on proceeding from 
the simpler to the more complex submodels. An invariant velocity vector is everywhere 
denoted by U =(U, V, W). 

The submodel 

4 3 

( 1 1 13 

describes the two-dimensional motion of a gas. A representation of the solution is 

(wh PI = (UP. P)O.Y,Z) (5.4) 
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Table 5 

k Coordinate Operator Invariant Invariant 

system independent variables component U 

I Bx4+X7+&11 

(a+O) 
x, =*-pe,r, +I, =dlnr 

f a 
U=U,-p0 

2 D&+x7 t.q =x-p&r 

3 C x7 t. x. 1 cl = I+ 

4 Xl +x7 f,xl =x-&r 

5 au4+x7+l3h 1 2 f, =r-pe,xl =x-p ,r 
u=u,-IS 

6 x7 +x0 fI = f - 8. X, r II = UC 

7 &y4+x11 *,=~-pInr,y,=k:,r,=l. 
t t 

9 
u=u-t 

10 Xl0 x, y, ‘? lJ=u 

11 x3+x4 r, x, =x - IL, y u=u-z 

12 x0 t, y, z UC+ 

13 Xl I, y, z u=u 

The factor system of the equations of the submodel is 

D$J=O, D,V+p-‘py =O, D,W+p-‘p, =O 

~P+P(V,+W,)=O, D,p+A(V,,+W,)=O 

(5.9 

where D1 = a, + Vd, + Wd,. 
In particular, with U = 0, this submodel describes the plane-parallel motions of a gas; (.Z> is 

a family of lines parallel to the x-axis. 
The submodel 

4 3 

( 1 1 12 

describes the Galilean-invariant motion of a gas. A representation of the solution is 

(5.6) 

The factor system is 

D,W)=O, D,V+p-‘p, =o,~w+p-‘~, =o 

~(~P)+~P(Vy+Wz)=O,Dd@)+rA(Vy+Wz)=O 

(5.7) 

where D1 = 3, + Vd, + Wa,. 
Here, 2 also consists of straight lines which are parallel to the x-axis. 
It is of interest to compare the tactor systems (5.5) and (5.7) in particular, in the case of a 

polytropic gas (A = yy). 
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The submodel 

describes the shear motions of a gas. A representation of the solution is 

~=z+~(~.~,~Y),(u,w,p,p)=(V,W,p,p)(t,x,,y),x, =x-rz 

The factor system is 

qu+p-‘px, =-w, qv+p-‘py =o 

4W-W1px, = 0; qp + p<u,, - ‘Wx, + VY> = 0 

D,p+A(Ux, --‘WI, +v,>=o 

m-9 

(5.9) 

where D1 = a, + (U = tW)~3,, + Vi),. 
The lines of % form a family of straight lines which are parallel to the (x, y)-plane, the 

angular coefficient of which depends on t. 
The submodel 

4 3 

( I 1 10 

describes the (steady) flows of a gas, a representation of the solution is 

The factor system is 

D,U+p-‘vp=O, Qp+pdivU=O, Qp+AdivU=O 

(5.10) 

(5.11) 

where D1 = Ua, + Vi-$ + Wa,. 
The lines of 2 form a family of straight lines which are parallel to the t-axis. 
The submodel 

4 3 

i 1 1 9 

describes the steady flows of a gas in a homogeneous force field directed parallel to the x-axis. 
A representation of the solution is 

u=t+U(x,y,z),(u,w,p,p)=(V,W,p,P)(~,,y,z), XI =X-t*/2 (5.12) 

The factor system is 

qu+p-‘p,, =-1,qv+p-‘py =o,qw+p-‘pz =o 

D,p+p(U,, +V,+W,)=O, D,p+A(CI,, +V,+W,)=O 
(5.13) 

where DI = Va, + Va, + Wa,. 
The lines Of 2 form a family of congruent parabolae lying in planes which are parallel to the 

(y, z)-plane. 
The submodel 
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describes the conically self-similar motions of a gas. A representation of the solution is 

(u&P)= W,p,p)(x,), Xl =x/r (5.14) 

With the operator D, = (U - ~,)a,~ + (V - ~,)a, +(W - z&3,, , the factor system has the form of 
(5.11) where V has to be replaced 
div,U = UI, +V,,, + Wz,. The family (Z> 

by V, = (axI, a,,, a,,) and divU has to be replaced by 
is a set of half-lines (rays) which emerge from the origin 

of coordinates. 
The submodel 

4 3 

i 1 1 7 

describes the quasiconical (or generalized conical) motions of a gas. A representation of the 
solution is 

u=~+U(x,,y,,z,), (u,w,p,p)=(V,W,p,p)(x,,y,,z,) 
t 

(5.15) 

The factor system is written in the form 

w + P-‘Px, = 4, qv + p-‘pm = 0 

o,W+P-‘P,, = 0; Qp+ p(U=, + vn + wz, + 1) = 0 

~P+A(U,, +Vn +wz, +1)=0 

(5.16) 

where DI = (U - f3)&, + (V - y&j,, + (W - zl)az,. 
The family {Z’) forms quasirays which are plane curves which emerge from the origin of 

coordinates. Their projections onto the space R3(x), which are obtained by eliminating the 
time t from formulae (5.15) provides a visual representation of these curves. A typical project- 
ion, which has an equation of the form x = or + br lnr in its (x, r)-plane is shown in Fig. 2. 

The remaining submodels are treated in cylindrical coordinates using (5.2) and (5.3). 
The submodel 

4 3 

( I 1 6 

describes the rotational motions of a gas. A representation of the solution is 

(U,.P1P)=(U,p,P)(t,,x,r), t, =t-8 (5.17) 

Fig. 2. 
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The factor system is 

D,V+p-‘px = 0, D,V+p-‘p, =+r-‘W2 

D’w - r-‘p-‘p,, = -r-w 

D,p+p(LI,+V,+r-‘V-r-%$)=0 

D’p+A(U,+V,+r-‘V-r-‘W,,)=O 

621 

(5.18) 

where DI = (I- r-W)& + ui), + Vi3,. 
Circles with their centres on the x-axis, lying in planes which are perpendicular to this axis, 

are the projections of the lines of 3 onto the space R3(x).The lines of Zf? themselves are spirals 
with a constant step “wound” on circular cylinders with an x-axis. 

The submodel 

4 3 

r 1 1 5 

describes the generalized rotational motions of a gas in a homogeneous force field directed 
parallel to the x-axis. A representation of the solution is 

f’ =t-pe. X’ =x-t212 

The factor system is written in the form 

DIV+p-‘px, =-l,D+‘+p-‘p, =+r-‘W2 

D, W - fir-‘p-‘p,, = -r-‘VW 

D,p+p(V,, +V,+r-‘V-Br-‘w,,)=O 

Dg+A(V,, +V,+r-‘V-f!r-‘W,,)=O 

(5.19) 

(5.20) 

where Dr = (1 - pr-‘W)a,, + Ua, + Va,. 
The complex form of the lines of ZZ in the case of this submodel admits of a simple 

interpretation if these lines are considered in a system of coordinates which moves according 
to the law x = t* / 2 in the direction of the x-axis. The family (3) then appears to be the same as 
in the submodel 

with a spiral step equal to 27$. 
The submodel 

describes the spiral motions of a gas. A representation of the solution is 

(“,,P,P)=(U,p,p)(t,x’,r),x, =x-e 

The factor system has the form 

(5.21) 
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D,U+p-‘px, =O, D’V+p-‘pr =+I--‘W* 

D, W - r-’ p-’ p,, = -r-l VW 

D,p+p(U,, -r-‘WI, +Vr +r-IV)=0 
(5.22) 

D,p+A(U,’ - r-‘Wx, + V,. + r-‘V) = 0 

where DI = 3, + (V - r-‘FV)axl + Vii,. 

Here, {X) is a family of straight lines parallel to the t-axis which are projected onto the space 
R3 in the form of a set of spirals with a constant step size, “wound” onto circular cylinders with 
an x-axis. 

The submodel 

4 3 

c 1 1 3 

describes the rotationally symmetric motions of a gas. A representation of the solution is 

(UC, P, p> = W, p, p)(t, x, r) (5.23) 

The factor system is 

4U+P-‘p~=0,4V+p-‘p,=+r-‘W*,D,W=-r-’VW 

D’p+p(U, +V,+r-‘V)=O,D’p+A(U, +V,+r-‘V)=O (5.24) 

where DI = 3, + Ua, + Va,. 

The lines 3 form a family of circles lying in planes perpendicular to the x-axis (in R3) with 
their centres on this axis. 

The particular solutions of (5.4) with W = 0 describe the axially symmetric motions of a gas. 
The submodel 

4 3 

( 1 1 2 

describes the generalized rotationally symmetric motions of a gas. 
A representation of the solution is 

u, =P8+U(r,xl,r),(I)c,wc,p,p)=(V,W,p,p)(r,xl,r) 

x, =x-pte 

The factor system is 

O,l_J+p-‘p,, = -f%--‘W, D,V+p-‘p, = cr-‘W* 

D’ W - fh-‘p-‘px, = -r-‘VW 

D’p+p(U,, -@Wx, +V,+r-‘V)=O 

D’p + A(U,, - PtW,, + V, + r-IV) = 0 

(5.25) 

(5.26) 

where DI = a, + (U - @+V)a,, + Va,. 
The projections of the curves of L3? onto the space R3(x) have, as in the case of the submodel 

4 3 ( 1 1 4 
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the form of spirals “wound” on circular cylinders with an x-axis. Here, however, the step size of 
the spirals depends on the time t. 

The submodel 

4 3 

( ) 1 1 

describes the quasiconical spiral motions of a gas. A representation of the solution is 

UC =Pe+U(X,,~~e,),(U,,W,,P,P)=(V,W,p,p)(X,,~,e~) 
xl =x/t-@,r, =rlf,8, =t3-a-‘lnt 

The factor system is 

D,U+p-‘p,, = -pr,-‘W, D,V+p-‘p, = +q-‘W* 

D, W - ~tq-‘p-lp,, + q-‘p-‘po, = -r,-’ VW 

D,p + p(U,, - pq-’ Wx, + V,, + r,-‘V + q-’ We, ) = 0 

(5.27) 

(5.28) 

D,p+A(U,, -pr,-‘W,, +V, +r;‘V+q-‘We,)=0 

where D1 = (U - x1 - /3r,-‘W)a, + (V - r,)d,, + (r,-‘W - CX-~)~,, . 
The projection of the lines of 2 onto the space R3(x) are spirals “wound” onto surfaces of 

revolution of curves of the form shown in Fig. 2. 
In the special case when p = 0, this submodel describes the conical spiral motions of a gas. In 

the case of these motions, the projections of 2 onto R3(x) are spirals “wound” on circular 
cones with a vertex at the origin of coordinates and with an x-axis. 

I wish to thank the participants at the seminar on “Group analysis” (Institute of 
Hydrodynamics of the Siberian Branch of the Russian Academy of Science) S. V. Meleshko, 
S. V. Khabirov, A. A. Talyshev, A. P. Chupakhin, E. V. Mamontov and A. A. Cherevko with 
whom the contents of this paper were discussed. 

The work was carried out with the financial support from the Russian Fund for Fundamental 
Research (93-013-17326). 

APPENDIX. THE NORMALIZED OPTIMAL SYSTEM Oh, 

The normalized optimal system of sub-algebras of the Lie algebra &,, with the basis (2.2), 
calculated using the algorithm in Section 4, is presented in Table 6. The sub-algebra 
representatives are denoted by a pair of numbers (r, i), where r is the dimensions and i is the 
serial number of a sub-algebra of dimensions r. The numbers r are given in front of each block 
containing sub-algebras of dimensions r. The serial numbers i are presented in the first 
column. The bases of the sub-algebras (r, i) are written out in abbreviated symbolic form in the 
second column (only the numbers of the corresponding basis vectors of (2.2) are written out as 
in Table 4 (see Section 4)). Here, the possible constraints on such parameters are indicated and 
the absence of such an indication means that the parameters can have any real values. The 
normalizers of the sub-algebras in ,5,,, are presented in the third column. By virtue of the 
normalized character of the whole table, these are contained in the same table and are 
therefore indicated as necessary for a pair (r’, i’). Here, the equals sign denotes that the 
corresponding sub-algebra is self-normalized. A superscript 0 indicates that the normalizer is 
contained in a series of sub-algebras and is obtained with a zero value of the parameter 
occurring in it. 
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Table 6 

i Basis NOI i Basis Nor 

I 1.2. 3; 4.5.6: 7, 8.9; to; 11 = 11.1 

r= IO 

I 1, 2, 3; 4, 5, 6; 7. 8, 9; I I = 10.1 

2 I, 2, 3; 4. 5,6; 7, 8,9; IO II.1 

r=9 

I 1,2,3;4,5.6;7; lo; II = 9.1 

2 1,2,3;4,5,6;7.8.9 II.1 

r=8 

I 

2 
1,2,3;7,8,9; IO; II 

I, 2, 3; 5.6; a4 + 7; IO; 

p4+ I1 

= 8.1 

9.1 

3 1,2,3;4,5,6;7+all; IO 9.1 
4 1, 2, 3; 4, 5.6; 7; I I = 8.4 

5 1.2,3;4.5.6; lo; 11 II.1 

r=7 

6 

I 

8 

9 

IO 

II 

I2 

13 

14 

1,2,3;7.8,9; II 

4.5.6; 7.8.9; 1 I 

2,3;5,6;7; lo; II 

1.2.3; 4; 7; lo; 11 

1, 2, 3; 5, 6; IO; 
84+7+all 

2, 3; 4, 5,6; 7; II 

1,2,3;5,6;a4+7;j34+11 

1, 2. 3; 4, 5.6; 7 + al 1 

1, 2, 3; 7, 8, 9; 10 

1, 2, 3; 5.6; a4 + 7; 4 + 10 

I, 2, 3; 4, 5, 6; 7 + 10 

l,2,3;5,6; !O;a4+ 11 

I, 2. 3; 4, 5, 6: 1 I 

1, 2, 3; 4, 5.6; 10 

= 7.1 

= 7.2 

= 7.3 

= 7.4 

9.1 

= 7.6 

8.4 

8.4 

8.1 
8.3” 

8.3” 

9.1 
10.1 

II.1 

r=6 9 

I 

2 
I, 2; 3; 7; lo; II; 

2. 3; 5,6; IO; 7 + al 1 
a*0 

I, 2, 3; 4; IO; 7 + al 1 
1; 4, 5, 6; 7; II 

1,2.3;4;7; II 

2,3;5,6;a4+7;p4+11 

2, 3; 4.5.6; 7 + al 1 

a+0 

7.4 

7.3 

7.4 
= 6.4 

= 6.5 

7.6 

7.6 

8 1, 2, 3; 5.6; 84 + 7 + al 1 8.4 
9 4, 5, 6; 7, 8. 9 7.2 

IO I, 2, 3; 7, 8, 9 8.1 
II 2, 3; 5.6; 1 + 7; IO 7.5O” 
I2 2, 3; 5,6; al + 7; 4 + 10 7.10° 

I3 2, 3; 5.6; 7; IO 8.2”” 
I4 2, 3; 4, 5. 6; I + 7 7.8” 

r= II r=6 

15 

I6 

I7 

I8 

2, 3; 4. 5. 6; 7 

I, 2, 3; 5, 6; 7 + IO 

2, 3; 5, 6; IO, 1 I 

l,2,3;4; lO;a6+ II 

a*0 

I9 

20 

21 

12 

13 

14 

I 

2 

3 

4 

5 

6 

7 

8 

9 

IO 

I1 

12 

13 

!O 

!I 

!2 

!3 

!4 

!5 

!6 

17 

18 

I, 2, 3; 4; lo: II 

I. 2. 3: 5.6; a4 + I I 

2, 3; 4, 5, 6; 1 I 

1, 2, 3; 5, 6; IO 

I, 2. 3; 5.6; 4 + IO 

I, 2, 3: 4, 5. 6 

r=5 

7, 8, 9; IO: I I 

1;4;7; lo; II 

2, 3; 7; IO; II 

l,2,3; 10;/34+7+all 

4. 5, 6; 7; II 

2, 3. 4; 7; I I 
I; 5.6; a4 + 7; p4 + I I 

1,2,3;a4+7;p4+11 

1;4,5,6;7+all 

2, 3; .5,6; p4 + 7 + al I 
a#0 

I. 2.3; 4; 7 + al I 

p#o 

I, 2. 3; a4 + 7; 4 + 10 

2, 3; 5.6; p4 + 7 

P+O 
2, 3; 5, 6; 7 

1, 2. 3; 4; 7 

I; 4, 3 + 5.2 - 6; 7 

2, 3; 5, 6; I + 7 

2. 3; 5, 6: p4 + 7 + PI 0 

P*0 
2, 3; 5, 6; 7 + 10 

!, 2,3; 4; 7 + IO 

2,3;5;10;~6+11 

I, 2, 3; lo; 4 + pr 1 
I, 2. 3; IO; II 

I; 4, 5. 6; I I 

2, 3; a4 + 5.6; p4 + I I 

a+0 

2, 3; 5.6, p4 + I I 

2, 3; 4.6; p5 + 1 I 
1,2,3;6;p4+ II 

P+0 
l,2,3;4; II 

2, 3; al + 5.6; 4 + IO 
a*0 

2. 3; 5, 6; 4 + IO 

2, 3; 1 + 5, 6; 10 

8.4 
7.5”” 

7.3 

8.5 

9.1 
8.4 

7.6 

9.1 
8.3” 
I I.1 

= 5.1 

= 5.2 

= 5.3 

7.4 

= 5.5 

= 5.6 

6.4 

6.5 

6.4 

7.6 

6.5 

6.3” 

8.4 

9.1 

9.1 
= 5.16 

8.3” 

7.10° 

7.5”” 

6.3” 

6.17 

9.1 
11.1 

6.4 

6.2 I 

7.6 

6.2 I 

7.13 

8.4 

6.23 

7.10” 

6.22 
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Table 6 ( Conhued) 

i Basis NOr 

33 2, 3; 5, 6; 10 8.2” 
34 1,2,3;6;4+ 10 7,14 
35 2, 3; 4, 5, 6 8.4 
36 2, 3; 4.5; 1 + 6 6.24 
37 1,2,3;5,6 9.1 

r=4 

I 
2 
3 

= 4.1 
5.2 
5.3 

5.2 
5.5 

= 4.6 
5.6 
5.5 

9 
10 
II 

6.4 
5.6 
6.5 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

7, 8, 9; 11 
l;a4+7; lo;11 
2,3; 10;7+all 
a*0 
1;4; 10;7+alt 
5,6;a4+7;P4+11 
1;4;7; II 
2,3;a4+7;84+11 
4, 5,6; 7 + al I 
a+0 

1;5,6;P4+7+all 
2,3;4;7+alt 
1,2,3;~4+7+all 
a+0 
1,2,3;p4+7 
7, 8,9; 10 
2,3; 7; 10 
2, 3; 1 + 7; 10 
2,3;a1+7;4+ 10 
4, 5.6; 7 
4, 5, 6; 1 + 7 
4,3+5,26;al+7 
1;3+5,2-6;a4+7 
2, 3; 4; 1 + 7 
t,2,3;@4+7+ t0 
1:4; lo; 1t 
2.3; t0;a6+ II 
a+0 
2, 3; 10; II 
4, 5,6; 11 
l;a4+5,6;@+1t 
a+0 
1;5,6;84+ tl 
1;4,6;a5+11 
2,3;a4+6;fi4+crS+lt 
2,3;4;a5+P6+ 11 
a*+@*+0 
2,3;4; it 
1,2,3;p4+11 

P+O 
1.2.3; 11 
2,3;at +5;4+86+10 
2.3; al + 5; 6 + 10 
2, 3; 1 f 5; 10 
2.3; 5; to 
t,2,3;4+ IO 

7,4 
5.1 
6.1 
5.4”” 
5.12O 
6.4 
5.9” 
S,16 
Se16 
5.15 
6.3” 
5,2 
6.17 

25 
26 
27 

7,3 
7.2 
5.24 

28 
2’9 
30 
31 

6.4 
5.24 
6.21 
6.21 

32 
33 

736 
8.4 

34 
35 
36 
37 
38 
39 

to.1 
6.23 
6.22 
6.22 
7.129 
8.3O 

r=5 

i Basis NOC 

40 I, 2,3; to 11.1 
41 1;02+r3+4,a3+5, 6.24 

42 
43 
44 

45 
46 

fi2+6 
d+rZ+fa+$)*= 1 
t;4,3+5,2-6 
1;4,5,6 
2, at + 3; t + 5.6 

a+0 
2,3; 1 + 5.6 
2, at + 3; 5.6 
a*0 
2, 3; 5.6 
t,2;3+5.6 
1, 2; 5.6 
1,2,3;4 

7.8” 
a.4 
6.24 

7,14 
7.13 

47 
48 
49 
50 

9.1 
6.24 
7.13 
9.1 

r= 3 

7; 10; If 
1; 10;f34+7+att 
4;7; 1t 
t;a4+7;@+ tt 
5,6;~4+7+all 
a+0 
1;4;7+att 
a+0 
2,3;@%+7+alt 
a*0 

7,8,9 
t;a4+7;4+ 10 
5.6; f&4 + 7 
1;4;7 
2,3;@+7 

Be0 
2,3; 7 
$6; t +a4+7 
3+S2-6;at +p+7 
2,3; t + 7 
1; 4; 7 + 10 
2,3;@4+7+BlO 

B+O 
2, 3; 7 + to 
1; to;p4+1t 
5,6;p4+ tt 
l;a4+6;pS+oS+lt 
t;4;06+ 11 
U#O 
t;4; tt 
2,3;p4+05+1t 
at0 
2,3;@4+ 11 
3;at+@2+6;4+10 
1;2+4; to 
1;4; to 

= 3.1 
5.2 

= 3.3 
4.6 
5.5 

6 426 

7 5.6 

8 
9 

to 
11 
12 

s.t 
4.40 
6.4 
5.2 
6.5 

13 
14 
15 
16 
17 
18 

7.4 
S.9O 
5;16 
6.3’ 
4,4O 
5.t2O 

19 
!O 
!1 
!2 
!3 

5.40° 
5.2 
5.5 
S.24 
$24 

!4 
!5 

6.4 
6.21 

!6 
!7 
!8 
!9 

7.6 
s,34 

Si2P 
7tl 

r=4 

53 
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Table 6 (Continued) 

i Ihsis Nor i Basis Nor 

r=3 

30 2,3; 4 + a6 + 10 
o+o 

31 2, 3; 4 + 10 
32 2, 3; 6 + 10 
33 2,3; 10 
34 -62 + p3 + 4.61 + a2 - a3 +5, 

,?:;p:s;~c+o6+ @2 = 1 

35 4.3 + 5.2 - 6 
36 1 + 4, 5, 6 

37 4.5.6 
38 al +3;pl +5,al +~2+6 

p2+$ +,2= 1 
39 al +3;5,6 
40 1,3+5,r2+6 

T#-1 
41 1.3+5,2-6 

42 1.5.6 
43 p1 + 3.2; 4 
44 2, 3; 4 
45 1.2;3+4 
46 1,2;4 

47 1,2,3 

r=2 

1 

2 
3 

4 

5 
6 
7 
8 
9 

10 
11 

10;7+all 
a+0 
a4+7;/34+ 11 
4;7+all 
a#0 
l;p+7+all 
a+0 
7; 10 
1+7; 10 
al + 7; 4 + 10 
4;7 
1;/34+7 
4;1+7 
1;p4+7+10 

6.23 

7.10” 
6,22 
8.2” 
6.24 

7.8” 
7.8’ 
10.1 
6.24 

7,13 
6.24 

7.8” 
8.4 
7,13 
8.4 
7.14 
8.5 

11.1 

3.1 

3.3 
3.3 

4.6 

4.2” 
3.2O” 
3,9O 
4.6 
592 
3.11 
4.40 

r=2 

12 lo; 11 
13 4; 11 
14 4;a5+11 

a+0 
15 l;pt+a5+11 

a#0 
16 l;p4+ 11 
17 1; 10 
18 3;4+a6+ 10 

a*0 
19 1; 4 + 10 
20 al+a3+5,pl+r2+6 

a2+P2+(a +Q2= 1 
21 3+5,2-6 

22 5.6 
23 a1+2;3+4 
24 al +2;4 
25 1;3+4 
26 1;4 

27 293 

r= 1 

1 P4+7+all 
a+0 

2 l34+7 

P#O 
3 7 
4 1+7 
5 p4+7+p10 

P*O 
6 7+ 10 
I p4+ 11 

B+0 
8 11 
9 4+ 10 

10 10 
11 3+4 
12 4 
13 1 

5.1 
5.5 
4.26 

5.24 

6.4 
7.4 
5.34 

6.3” 
6.24 

7.8” 
8.4 
6.24 
7.13 
7.14 

9.1 
9.1 

3.3 

4.6 

5.2 
4.4” 
3.9” 

3.2”” 
5.5 

7.2 
5.12” 
8.1 
6.24 

8.4 
9.1 
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